Unitree rl gym com / leggedrobotics / legged_gym. Learn what RLGym is and how to get started. You signed out in another tab or window. Manipulation: avp_teleoperate Use Apple Vision Pro to teleoperate Unitree G1, H1_2. It contains the urdf files of all Unitree robots. unitree_rl_gym: 基于NVIDIA Isaac强化学习示例,支持Go2、H1、G1等多个型号机器人。 1516: 2: unitree_ros: ROS仿真包,内含所有Unitree系列机器人的URDF文件,并提供详细的物理参数。 强化学习(Reinforcement Learning, RL)依靠智能体(agent)在与环境不断交互的过程中,通过奖惩反馈逐步优化行为策略,以达到长期收益最大化。 Unitree quadruped robot launched a new power intelligent inspection solution, designed a series of solutions for dangerous, urgent and repetitive tasks, and provided efficient guarantee for power system construction, operation and You signed in with another tab or window. High Security Protection, Fast Charging. base. Your Pocket Gym. rar. kinect_teleoperate Use Azure Kinect DK camera to Contribute to unitreerobotics/unitree_rl_gym development by creating an account on GitHub. Robot. Never skip a workout, wherever unitree_robots. Saved searches Use saved searches to filter your results more quickly Unitree RL GYM is a reinforcement learning platform based on Unitree robots, supporting models such as Unitree Go2, H1, H1_2, and G1. 20. 06; SteamVR 2. com / https: // github. py) and a config file (legged_robot_config. Contribute to unitreerobotics/unitree_rl_gym development by creating an account on GitHub. 您好,我是您的ai文档助理。您可以向我提问,查询文档中心的相关内容。 宇树给这个项目取名叫 RL GYM ,可能和一开始专门提供基于Issac Gym的训练代码有关。 现在RL GYM又支持了MuJoCo,可以在预训练的基础上进行仿真模拟了。 训练阶段的Issac Gym需要CUDA,也就是需要N卡,仿真阶段的MuJoCo 此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。 如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。 You signed in with another tab or window. Analysis I doublechecked the sys. 4 (IMPORTANT! You signed in with another tab or window. Update with Replacement, Utility Player. To train in the default configuration, we recommend a GPU with at least 10GB of VRAM. com - shanhhe/unitree_rl_gym Then we can take a glance at the code structure, this part gives us help for adding new robots to our training enviroment. 1 # 3 拉取源码 ## 3. The config file contains two classes: one conatianing all the environment parameters (LeggedRobotCfg) and one for the training parameters This document will provide a simple example of reinforcement learning control for Go2. py --task=xxx Description:. h. Run the following command. Important : To improve performance, once the training starts press v to stop the rendering. The basic workflow for using reinforcement learning to achieve motion control is: Train → Play → Sim2Sim → Sim2Real. 9万元起! 英伟达GTC大会丨宇树通用人形机器人H1与全球共同拥抱AI 2024年3月19日,英伟达CEO黄仁勋在美国加州圣何塞SAP中心发表主题演讲《见证AI的变革时刻》,正式拉开了2024年英伟 Unitree quadruped robot launched a new power intelligent inspection solution, designed a series of solutions for dangerous, urgent and repetitive tasks, and provided efficient guarantee for power system construction, operation and 强化学习驱动下的,机器人每天的日常训练小片段。部分极端测试,请勿模仿。, 视频播放量 2161972、弹幕量 3286、点赞数 117612、投硬币枚数 4844、收藏人数 9353、转发人数 10879, 视频作者 Unitree Explore the comprehensive user manual, tutorials, and documentation for the Unitree Humanoid H1 robot. So I added other terrain like the stairs, uniform terrain which is provided by issacgym (trimesh), but it failed when training with the same reward. Running. For evaluation, we utilize the Unitree Go1 and Go2 robots as new entities, fine-tuning them on simple rough terrain. py). The content is generated by an AI model and may not be entirely accurate; please carefully discern. git # 3. Download Isaac Gym from Nvidia’s official website. The model trained through Isaac gym is successfully simulated in gazebo and deployed on the real robot. This is a reinforcement learning implementation warehouse based on Unitree Technology's robots, supporting Unitree Technology's Go2, H1, H1_2, and G1. 7 or 3. Due to isaac_gym simulation platform requires CUDA, and Unitree’s RL platform, named RL GYM, originates from its initial focus on Isaac Gym-based training. This receives an action from the agent, takes a step from the We would like to show you a description here but the site won’t allow us. This integration leverages MPC's strength in predictive capabilities and RL's adeptness in drawing from past experiences. py └──机器人文件夹 unitree_rl_gym. The 基于unitree_guide状态机的四足机器人强化学习部署方案。将通过Isaac gym训练的模型成功在gazebo中实现仿真,并完成真机部署。通过修改CMakeLists. The config file contains two classes: one conatianing all the environment parameters (LeggedRobotCfg) and one for the training parameters You signed in with another tab or window. Isaac Gym 6. Run directly on a VM or inside a container. 1 pip install setuptools == 64. Humanoid-Gym also integrates a sim-to-sim framework from Isaac Gym to Mujoco that allows users Go2 Battery. Go2 Charger. Hardware preparation. txt, the switch between simulation and deployment can be achieved. com / unitreerobotics / unitree_rl_gym. Find installation, configuration, and user guide for Go2, H1, H1_2, and G1 robots. 0. H1 Overview; H1-2 Overview; Fitness PUMP. Powered by VoiceFe 在Isaac gym项目文件下创建一个ws,将unitree_controller中的cpp文件转译为python文件,编译后即可正常运行。基于unitree官方ws, 创建一个empty. So far, I’ve successfully loaded the robot’s model and tested the environment using joint_mokey. 计算机术语. In this example, we show how to create a custom environment for Rabbit to be used with gymnasium TODO: Implemented this way, Isaac Gym enables a complete end-to-end GPU RL pipeline. On a Unitree Go1, it achieves robust traversal across challenging terrains while moving rapidly over natural terrains. Please refer to setup. B2 B2-W The "unitree_guide" is an open-source project designed for controlling Unitree Robotics' quadruped robots. legged_robot_config import LeggedRobotCfg, LeggedRobotCfgPPO class G1RoughCfg ( LeggedRobotCfg ): class init_state ( LeggedRobotCfg . The Rocket League Gym. If a window opens The following will explain how to use isaac_gym simulation platform trains the Go2 control algorithm. Traing anytime and anywhere, Weighs only 700g, Miniature and portable, Ultra High Integration. However, so Abstract—Humanoid-Gym is an easy-to-use reinforcement learning (RL) framework based on Nvidia Isaac Gym, de-signed to train locomotion skills for humanoid robots, em-phasizing zero-shot transfer from simulation to the real-world environment. R3 Controller. Isaac Gym. Discover Unitree PUMP: the worlds first motorised pocket gym. init_state ): ### 使用 Unitree_RL_Gym 训练自定义强化学习模型 为了使用 unitree_rl_gym 训练自定义的强化学习模型,可以遵循以下指南: #### 安装依赖库 确保安装了必要的 Python 库以及配置好环境。通常情况下,这包括但不 Unitree RL GYM是一个专为Unitree机器人设计的强化学习环境,旨在为研究人员和开发者提供一个易于使用的平台。 该项目支持多种型号的Unitree机器人,如Go2、H1、H1_2和G1,使得用户可以在虚拟环境中进行机器人控制和学习算法的实验。 unitree_rl_gym : An Issac simulation example for reinforcement learning, supports Go2, H1, G1. It has been invited to participate in the 2021 CCTV Spring Festival Gala of the Year RL — agent and environment interaction. unitree_ros is a ROS simulation package for Unitree robots. Learn how to use Unitree robots for reinforcement learning with Gym, Mujoco, and physical deployment. txt即可实现仿真与部署的切换。 考虑到文件大小,仅保留了go1的urdf文件,如需使 宇树科技 文档中心 - support. A concrete example is given on the right (ankle of the Talos robot) Unitree A1 robot navigating complex terrains. 6, 3. 4 后面的步 Contribute to 1987195346/deer_gym_plane development by creating an account on GitHub. 4. System Requirements. py to learn how MuJoCo is used with Gymnasium (previously know as opengym), a well-known framework to work with RL algorithms for robotics tasks. Unitree RL GYM 🌎 English | 🇨🇳 中文 This is a repository for reinforcement learning implementation based on Unitree robots, supporting Unitree Go2, H1, H1_2, and G1. Powered by VoiceFe Unitree RL GYM is a reinforcement learning platform based on Unitree robots, supporting models such as Unitree Go2, H1, H1_2, and G1. The following will explain how to use isaac_gym simulation platform trains the Go2 control algorithm. 2 加载自己绘制的URTL文件. Background I followed the doc to configure the example, but encountered ModuleNotFoundError: No module named “legged_gym” as I tried to run python3 train. Skip to main content. 29. 0 Bi-pedal H1. 4: Planar 4-bar mechanism, with the serial link rotating around O, of angle qs, motor rotating around M of angle qm, B the attachment of the linkage on the lower limb and A the joint of the closed-loop linkage. Weighs only 700 grams, rejuvenate the body anytime, anywhere. Unitree G1,人形智能体,AI化身,9. ### 使用 Unitree_RL_Gym 训练自定义强化学习模型 为了使用 `unitree_rl_gym` 训练自定义的强化学习模型,可以遵循以下指南: #### 安装依赖库 确保安装了必要的 Python 库以及配置好环境。通常情况下,这包括但不限于 PyTorch 和 Gym。 ```bash pip install torch torchvision torchaudio gym numpy matplotlib opencv-python ``` #### 配置模拟环境 设置适合 Isaac Gym 允许开发人员为基于物理的系统试验端到端 GPU 加速 RL。 在 Isaac Gym 中,仿真可以在 GPU 上运行,并将结果存储在 GPU 张量中,而不是将它们复制回 CPU 内存。 其提供了一个基于张量的 API 来访问这些结果,允许在 To enable VR support on linux will take some time, but it works! I have tested it on: Ubuntu 22. (10kg model), the A milestone for RL + robotics. Showcases Isaac Gym's GPU-based parallel simulation to train quadruped locomotion policies in minutes. RLGym Introduction RLGym Tools RLGym Learn Blog API Reference. Reload to refresh your session. Contribute to kvnyng/unitree_rl_gym_kvnyng development by creating an account on GitHub. com/unitreerobotics/unitree_rl_gym. This is the code base of Robot Control with Reinforcement Learning based on Isaac Gym Environments for Unitree Go1 Robots. Hosted runners for every major OS make it easy to build and test all your projects. This document is part of the Proceedings of Machine Learning Research, featuring research papers on various machine learning topics. Unitree RL Gym是一个基于Unity平台与Unitree四足机器人深度整合的强化学习环境,为AI研究者和开发者提供直观、高效的机器学习实验空间。利用先进的物理引擎和高度仿真的机械动作模型,加速从算法设计到实际应用的过程。通过丰富的示例代码及文档支持,让创新想法轻松落地,开启智能机器人学习新纪元。加入我们,在虚拟世界中探索无限可能!【此简介由AI生成】 this software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. unitree. 需要setuptools>=64. We create the simulated low-level We would like to show you a description here but the site won’t allow us. ghproxy. Fast Charging, Long-lasting Standby. 8 recommended) Contribute to unitreerobotics/unitree_rl_gym development by creating an account on GitHub. ±22° Please visit Unitree Robotics Website for more related terms and policies, and comply with local laws and regulations. unitree_robots See the file gym_basics. py --task=go2. Ultra-high integration and easy to carry. After extracting the package, navigate to the isaacgym/python folder and install it using the following commands: pip install -e . 进入github中下载相关的文件 https://github. We would like to show you a description here but the site won’t allow us. Custom Environments. pdf. 1 下载相关文件. For efficient policy training in simulation, we train a learned low-level policy to mimic the behavior of Unitree’s built-in controller. Efficient Simulation Environment: Integrate simulation tools such as Isaac Gym and Mujoco to provide efficient physical simulation capabilities. com/unitreerobotics/unitree_rl_gymAuthor: unitreeroboticsRepo: unitree_rl_gymDescription: nullStarred: 829Forked: 125Watching: 16Total co I noticed that the provided code only has a ground terrain to train the go2. com/leggedrobotics/legged_gym. By modifying CMakeLists. Unlike traditional locomotion controls that separate stance foot control and swing foot trajectory, GitHub is where people build software. Newly Upgraded, Immersive Interaction Traing anytime and anywhere, Weighs only 700g, Miniature and portable, Ultra High Integration. 2 legged_gym源码 git clone https: // mirror. git ## 3. ### 使用 Unitree RL Gym 实现机器人运动控制的强化学习 #### 安装依赖库 为了使用 unitree_rl_gym 进行开发,需先安装必要的Python包。这通常包括但不限于gym、numpy和其他机器学习框架。 bash pip install 计算机术语. com/unitreerobotics/unitree_rl_gymContribute to unitreerobotics/unitree_rl_gym development by creating an account on GitHub. Contribute to MexWayne/mexwayne_unitree_rl_gym development by creating an account on GitHub. Instead, we use Unitree’s built-in low-level controller, which tracks the velocity commands significantly more robustly in the real world. Hardware preparation To run on CPU add following arguments: --sim_device=cpu, --rl_device=cpu (sim on CPU and rl on GPU is possible). 04; Nvidia drivers are 545. To run headless (no rendering) add --headless . Hardware Deployment:为Unitree GO1 EDU机器人提供部署代码。需要机器人的EDU版本来运行和自定义运动控制器。 文章浏览阅读312次,点赞3次,收藏9次。里面配置了Isaaclab收录的所有宇树机器人,但是。中找到了机器人们的配置文件,其中有一个文件为。,在IsaacLab中也要写一个对应的。目录下执行训练脚本,就可以开始训练啦。,然后对里面的文件进行一定的更改。的关节,写一段config插在。中可以看到宇树的机器人训练环境。 I try to deploy the trained policy in unitree_rl_gym on walk-these-ways-go2 repo, it works very back. 在宇树的整个开源体系当中,RL GYM只是其中一环,在宇树所有的GitHub仓库中星标数排第三。 排第一的是针对开源机 2. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects. The basic workflow for using Unitree RL Gym是一个基于Unity平台与Unitree四足机器人深度整合的强化学习环境,为AI研究者和开发者提供直观、高效的机器学习实验空间。利用先进的物理引擎和高度仿真的机械动作模 Genesis supports parallel simulation, making it ideal for training reinforcement learning (RL) locomotion policies efficiently. Use an Ethernet cable to connect your computer to the network port on the robot. In this tutorial, we will walk you through a complete training example for obtaining a basic locomotion policy legged_gym是苏黎世联邦理工大学(ETH)机器人系统实验室开源的基于英伟达推出的仿真平台Issac gym(目前该平台已不再更新维护)的足式机器人仿真框架。注意:该框架完全运行起来依赖强化学习框架rsl_rl和Issac gym,本文不对强化学习框架rsl_rl和仿真平台脚本进行描述解释。legged_gym ├──envs ├──__init__. Currently supported robots include Unitree G1, H1, H1_2. Mainly seen in unitree_guide\unitree_guide\src\FSM\State_RL. You switched accounts on another tab or window. py --task=go2 --num_envs=1 You signed in with another tab or window. Back To Top . Play. This platform provides an integrated environment for researchers and developers to train 宇树机器人提供了RL GYM项目,可以在Issac Gym和MuJoCo平台上训练和模拟G1、H1和H1-2三款机器人的强化学习算法。还有详细的教程、数据集和其他开源项目,让你轻松学习训练机器人。 This is a repository for reinforcement learning implementation based on Unitree robots, supporting Unitree Go2, H1, H1_2, and G1. Simulation. Simulated Training and Evaluation: Isaac Gym requires an NVIDIA GPU. start gazebo: 机器人公司宇树科技(Unitree)近日宣布,将全面开源其机器人训练的源代码,这一举措在业界引发广泛关注。此次开源内容包括强化学习(RL)训练代码,以及从模拟到模拟(Sim-to Hey everyone, I’m currently working on setting up an RL training session to teach a quadruped to walk using IsaacGym Preview 4. Save $149! Powered by tech trusted by Google & Amazon, enjoy up to 160kg resistance, a feature-rich app, and a supportive community. I’ve also been able to load terrain and set up the physics. All five fingers can be replaced independently. com Unitree’s RL platform, named RL GYM, originates from its initial focus on Isaac Gym-based training. Ultra-fast Reflexes, Snake-like Flexibility. It serves as the software engineering project companion to the book titled 《Control Algorithms for Quadruped Robots: Modeling, Control, and Practice》 published by Unitree Robotics. 包括缺陷和有限视场效应的Etalon模型 matlab代码. cpp and unitree_guide\unitree_guide\include\FSM\State_RL. envs. Download. https://github. Go2 Go2-W Go1. Professional Gym in Your Pocket. The code can run on a smaller GPU if you decrease the number of parallel CSDN问答为您找到宇树机器狗强化学习unitree-rl-gym示例运行错误相关问题答案,如果想了解更多关于宇树机器狗强化学习unitree-rl-gym示例运行错误 python、迁移学习、机器学习 技术问题等相关问答,请访问CSDN问答。 Linux, macOS, Windows, ARM, and containers. 8 (3. 1 本人使用的下面仓库 git clone https: // github. Train your first Rocket League bot and learn how to customize your environment. 3 unitree_rl_gym源码 https: // github. Instant dev environments Url: https://github. 这是一个基于宇树科技机器人的强化学习实现的仓库,支持宇树科技的 Go2、H1、H1_2 和 G1。 unitree_sdk2的Python接口,用于在真实环境中开发Go2、B2、H1、G1机器人。 Then we can take a glance at the code structure, this part gives us help for adding new robots to our training enviroment. You signed in with another tab or window. Our focus is on training the Unitree Go1 quadruped robot to proficiently follow given speed Train: 通过 Gym 仿真环境,让机器人与环境互动,找到最满足奖励设计的策略。通常不推荐实时查看效果,以免降低训练效率。 Play: 通过 Play 命令查看训练后的策略效果,确保策略符合预期。 Sim2Sim: 将 Gym 训练完成的策略部署到其他仿真器,避免策略小众于 Gym 宇树给这个项目取名叫 RL GYM ,可能和一开始专门提供基于Issac Gym的训练代码有关。 现在RL GYM又支持了MuJoCo,可以在预训练的基础上进行仿真模拟了。 from legged_gym. 这个链接用来下载 全球高性能四足机器人行业开创者,全球四足机器人行业应用的领航者。 Find and fix vulnerabilities Codespaces. Isaac Gym provides a basic API for creating and populating a scene with robots and objects, supporting loading data from Isaac Gym Preview 4 Release: This release aligns the PhysX implementation in standalone Preview Isaac Gym with Omniverse Isaac Sim 2022. Train: 通过 Gym 仿真环境,让机器人与环境互动,找到最满足奖励设计的策略。通常不推荐实时查看效果,以免降低训练效率。 Play: 通过 Play 命令查看训练后的策略效果,确保策略符合预期。 Sim2Sim: 将 Gym 训练完成的策略部署到 You signed in with another tab or window. You can obtain information such as the mass inertia moment limit of the Unitree robot This is a simple example of using Unitree Robots for reinforcement learning, including Unitree Go2, H1, H1_2, G1 Installation Create a new python virtual env with python 3. 包括了 强化学习(RL)训练代码、从模拟到模拟(Sim-to-Sim) 和 从模拟到现实(Sim-to-Real) 的源代码。 可以在Unitree H1、H1-2和G1机器人上运行 该项目可以帮助开发者或研究人员在虚拟环境中模拟和训练机器人,然后把训练结果转移到机器人上 You signed in with another tab or window. Evaluation Procedure: After training convergence, we assess the policies on new tracks, allowing the robots to traverse as far as possible to gauge their capabilities. unitree_ros. Now, with MuJoCo support, it enables pre-trained simulation and deployment on real robots. An environment is a finite-state machine that has all the states that an agent can observe. Rocket League. Flexible Training Configuration: Users ### 使用 Unitree RL Gym 实现机器人运动控制的强化学习 #### 安装依赖库 为了使用 `unitree_rl_gym` 进行开发,需先安装必要的Python包。这通常包括但不限于gym、numpy和其他机器学习框架。 ```bash pip install gym numpy torch # 假设使用PyTorch作为深度学习框架 ``` #### 配置环境 创建并配置模拟环境对于启动项目至关重要。 Forked from https://github. Train: Use the Gym simulation environment to let the robot interact with the environment and find a policy that H1和H1-2也与此类似,另外通过RL GYM还可以在Issac Gym里训练机器狗Go2: 还有更多开源项目. Learn how to set up, operate, and program your H1 robot efficiently. To visualize the training results in Gym, run the following command: python legged_gym/scripts/play. A key highlight Unitree Robotics is the global high-performance quadrupedal robot industry pioneer, the global quadrupedal robot industry applications of the leader. Gym is a standard API for reinforcement learning, and a diverse collection of reference environments# The Gym interface is simple, pythonic, and capable of representing general RL problems: import gym env = gym. RLGym A Python API for Reinforcement Learning Environments. 1 to simplify migration to Omniverse for RL workloads; Added support for SDF collisions Fig. Number of degrees of freedom. Getting Started. Modify the network configuration as 本文使用强化学习的方法运行到Aliengo机器人上完成从训练到部署的全过程。该方法使用的是GO1机器人提供了完整的sim to real代码和遥控器控制代码,所以我们只需要重新训练和部署健康就可以使用在Aliengo上。该方法使用lcm进行通讯首先程序通过UDP和机器人控制板进行通讯获取机器人状态并下达指令。然后又通过lcm进行机器人状态信息的发布和模型命令的 Ai其他最新工具Unitree RL GYM,Unitree RL GYM是一个基于Unitree机器人的强化学习平台,支持Unitree Go2、H1、H1_2、G1等型号。该平台提供了一个集成环境,允许研究人员和开发者训练和测试强化学习算法在真实或模拟的机器人上 包括了 强化学习(RL)训练代码、从模拟到模拟(Sim-to-Sim) 和 从模拟到现实(Sim-to-Real) 的源代码。 可以在Unitree H1、H1-2和G1机器人上运行 该项目可以帮助开发者或研究人员在虚拟环境中模拟和训练机器人,然后把训练结果转移到机器人上 unitree_rl_gym. (RL) training. 5 pieces. This code can deploy the trained network on physical robots. This platform provides an integrated environment for researchers and developers to train Unitree RL Gym是一个基于Unity平台与Unitree四足机器人深度整合的强化学习环境,为AI研究者和开发者提供直观、高效的机器学习实验空间。利用先进的物理引擎和高度仿真的机械动作模型,加速从算法设计到实际应用的过程。通过丰富的示例代码及文档支持,让创新想法轻松落地,开启智能机器人学习新纪元。加入我们,在虚拟世界中探索无限可能!【此简介由AI生成】 https://github. Released the influential open-source "legged_gym" codebase, which many subsequent works have built upon. append() line and ensured that 🦿 Training Locomotion Policies with RL# we will walk you through a complete training example for obtaining a basic locomotion policy that enables a Unitree Go2 Robot to walk. md for installation and configuration steps. Play’s parameters are the same as Train’s. make pushing a heavy object. 在Gazebo中验证Unitree Simulated Training and Evaluation: Isaac Gym requires an NVIDIA GPU. I'm wondering how many iterations are needed to train a go2, by using python legged_gym/scripts/train. world。_isaac gym gazebo. We start by creating a gym-style environment (go2 Unitree RL GYM是一个基于Unitree机器人的强化学习平台,支持Unitree Go2、H1、H1_2、G1等型号。该平台提供了一个集成环境,允许研究人员和开发者训练和测试强化学习算法在真实或模拟的机器人上的表现。它的重要性在于推动机 unitree_rl_gym. path. Then we can take a glance at the code structure, this part gives us help for adding new robots to our training enviroment. I think these two repos have totally different PD parameters. Now, I’m trying to utilize the IsaacGymEnvs repository to configure an RL training Deploy learned policies on the Go1 using the unitree_legged_sdk. reinforcement learning framework. Deploy Sim2Real unitree G1 #45 opened Mar 1, 2025 by chuanvan Why the policy is implemented using a multilayer perceptron (MLP) composed of one layers We would like to show you a description here but the site won’t allow us. H1 Tutorials 1. . Each environment is defined by an env file (legged_robot. com / linClubs / rl_gym. jdvc ljte vrjmye tmojbmv tmcl xqkjnuc bjhnxx tix ullzhn yywi iapcsth gwjc ssxr cfonlp mruzmsj